
Visualizing spatial data

Goal: draw a picture to illustrate interesting patterns in data

Problem: Spatial data is 3D: X,Y for location and Z for value

Could plot Z vs X and Z vs Y: incomplete
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Visualizing spatial data

Many different solutions. I’ll illustrate various

bubble plot: radius of symbol proportional to
√
Z

Avoids a graphical illusion: we see area, not radius/diameter
so radius ∝

√
Z means area ∝ Z .

colored dot plot: color indicates Z

image plot: color indicates Z

contour plot: lines indicate Z

Avoid perspective plots. They usually don’t work well.

more focused plots for specific situations

Conditioning plots: compactly show subsets of data all at once
Z vs X for bands of Y
Spatial plot for each time
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Visualizing data on maps

You can plot data on maps

Can show just the locations or values at locations
Often more informative than on a blank background

Need to get the map: 3 major sources

OpenStreetMaps: appears to not be available right now
Bing: requires registration and an API key
Google: street maps are open, other images require API key
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Spatial sampling

Consider a population of 2000 objects along a line (next slide)

Want to learn about this population, but can only afford n =5 samples

Draw a sample, estimate sample quantities, infer to the population

Simple random sample

usually without replacement
every unit has same probability of occuring in the sample

inclusion probability

every pair of units has the same probability of occuring together in the
sample

joint inclusion probability
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Simple random sample

Simpler population: 2000 students

randomly select and measure 5 of the 2000 units in the population

calculate sample average: Ȳ =
∑

Yi

n

and sample variance: s2 = 1
n−1

∑(
Yi − Ȳ

)2

and se of Ȳ =
√

s2/n

Questions:

1 Why is Ȳ a good way to estimate µ?

2 Why is s2 a good way to estimate σ2?

3 Is
√

s2/n a good estimate of the variability of Ȳ ?
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Why do the usual things?

Why “usual” quantities are good quantities:

1 because of theoretical properties of the estimators.

2 because of simulation studies do not uncover problems.

Notation / vocabulary:

E X is the expected value (theoretical average) of X , a random
variable.

Estimator: The function that computes an estimate

Estimate: A value for a specific data set
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Properties of estimators

Results from 587/588 stated / proved using a model for the data

Yi = µ+ εi , εi ∼ iid N(0, σ2)

Observations (or errors) are independent

With constant variance

And mean error = 0 for all observations

Why the mean is good:

Unbiased: E Ȳ = µ

Minimum variance among unbiased estimators for this model:
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(optional) Proof / elaboration

Why mean is unbiased

Model says E ε = 0, so E Y = µ

E Ȳ = E [ΣYi/n] = ΣE [Yi ] /n = Σµ/n = nµ/n = µ

Minimum variance among all unbiased estimators

Ȳ is a random variable. Estimates µ. Has a variance.
Note Var Ȳ= se2

Consider another unbiased estimator of µ. Call it θ. E θ = µ.

Can prove: Var Ȳ ≤ Var θ

True for any θ that is unbiased

Ȳ better (or never worse) than any other unbiased estimator of µ.

When Var θ is the criterion for better
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Properties of estimators

Example: Model above (Normal errors). Three ways to estimate µ:
average, median, and mid-range: ave. of smallest and largest value.
Distribution of estimates for samples of N=20 obs.
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Properties of estimators

Example: Model above (Normal errors) with µ = 0.

Numeric summaries of the three sampling distributions

Sampling
Statistic average sd
average 0.00 0.224
median 0.00 0.272
mid-range 0.00 0.378

All three estimators are unbiased:

Population mean: 0.0000. All estimators are 0.00, on average

Sample average is the least variable.

Sample variance is an unbiased estimate of σ2

And s2/n (= se2) is an unbiased estimate of the variance of Ȳ
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Properties of estimators

Above result seems obvious:

sample average uses all the observations, so isn’t it obviously the best?

Not at all a duh, obvious.

New model for data: uniform distribution: Yi ∼ U(a, b))

a and b not known, µ = (a + b)/2.

Assume population is U(0, 2), µ = 1

Best estimator of µ is now the mid-range.

Statistic mean se
average 1.00 0.13
median 1.00 0.21
mid-range 1.00 0.066

Crucial point: “good” or “not-so-good” depend on the model
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Back to Simple Random Sample of a transect

Measure 5 locations along our transect. Simple random sample.

Randomly choose locations to measure.

All locations are equally likely to be chosen

SRS: all sets of 5 locations equally likely to be chosen

Analyze in usual way: Ȳ , s, se of Ȳ = s/
√
n

The population has a clear spatial trend.
Units are similar to their neighbors
Questions:

1 What can we say about Ȳ ? Is it still good?

2 Are the sample average and sd still valid estimators of the population
quantities?

3 Is that se calculation still appropriate?
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Back to a Simple Random Sample
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Answers

What can we say about Ȳ ? Is it still good?

Are the sample average and sd still valid estimators of the population
quantities?

Is that se calculation still appropriate?

A: Yes, to all questions.
Spatial correlation in the population does not make usual estimators
“bad”
But, often can use spatial correlation to get a better estimator
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Question

Q: When you sample from a population, what is the random variable?
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Answer

Q: What is the random variable?

A: It is not the value attached to a population unit, Yi .

The Yi are assumed to be fixed values, one for each unit.
The value for unit 125 doesn’t change because it was or wasn’t
sampled.

The only random variable in the classic approach to sampling is
whether or not the i ’th unit is included in the sample.

Example of design based inference

Statistical conclusions justified by how the data were collected
not by an imaginary model (model based inference)

Huge practical consequences.
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(optional) Properties of SRS for spatial data: average

Define Si = I (unit i is in the sample)

E Si = ΣSi
N = n

N = P[ unit i in the sample]

Ȳ = Σall obsSi Yi
N

E Ȳ =
Σall obsSi Yi

n
=

1

n
EΣall obsSi Yi =

1

n
Σall obsYi ESi

=
1

n
Σall obsYi

n

N
=

Σall obsYi

N
= µ
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(optional) Properties of SRS for spatial data: variance

Usual expression for s2 is clumsy to work with

Another formula for the sample variance is s2 =
Σj>i (Yi−Yj )

2

n(n−1)
Try it sometime!

Define Sij = I (sample includes units i and j)

E Sij =
Σj>iSij

N(N−1)/2 = n(n−1)/2
N(N−1)/2 = n(n−1)

N(N−1) =

P[ units i and j in the sample]

E s2 = E
ΣN
j>iSij(Yi − Yj)

2

n(n − 1)
=

ΣN
j>i (Yi − Yj)

2E Sij

n(n − 1)

=
ΣN
j>i (Yi − Yj)

2

n(n − 1)

n(n − 1)

N(N − 1)
=

ΣN
j>i (Yi − Yj)

2

N(N − 1)
= σ2
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(optional) se of the average

Var Ȳ = Var

(
1

n
ΣNSiYi

)
=

=
1

n2

(
ΣNY 2

i Var Si + 2ΣN
j>iYi yj Cov Si , Sj

)
E SiSj = P[Si = 1,Sj = 1] = ESij =

n(n − 1)

N(N − 1)

Cov Si ,Sj = E SiSj − (E Si )(E Sj) =
n(n − 1)

N(N − 1)
−
( n

N

)2

=
−n(N − n)/N

N(N − 1)

Var Ȳ =
1

n2

n

N

N − n

N

(
ΣNY 2

i −
1

N − 1
ΣN
j>iYi Yj

)
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(optional) se of the average

This can be simplified by recognizing

ΣN(Yi − Ȳ )2 = ΣNY 2
i −

(ΣNYi )
2

N

=
N − 1

N

(
ΣNY 2

i −
1

N − 1
ΣN
j>iYi Yj

)
Var Ȳ =

1

n

N − n

N

Σ(Yi − Ȳ )2

N − 1

=
σ2

n

N − n

N

Thompson, Sampling, is a good book on all this
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Summary of sampling spatial data

Notice what was not assumed above:

no distribution (no normality)
no equal variances
no assumption of relationships between neighbors
just each obs equally likely to be sampled
and each pair equally likely to be sampled

All the properties of estimators in a simple random sample follow
from the random selection of elements from the population.

In particular, constant joint inclusion probability gets you a valid
estimate of the standard error
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Spatial correlation and the SRS

Another way of thinking about spatial correlation and a SRS:

The selection of units 1,2,3,4,5 is just as likely as any other sample
Can randomly permute the population, no change to properties of the
estimators
But after permutation, no relationship among neighbors, no spatial
correlation

Having just said all this, there may be better estimators
(e.g. of the population mean),

Better in the sense of having a smaller standard error than the SRS
estimator
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Systematic spatial samples

Simple random samples are not commonly used for spatial data

Systematic sampling is much more common

Put down a long meter tape and sample (soil, plants, ...) every 10m.

Or sample at a grid of points, separated by 10m EW and 10m NS

Best is a random start systematic sample

Starting point is randomly chosen, then every X m

n = 5 points on our 200m = 2000 unit transect

200m/5 = 40m between points
randomly choose starting point between 0.1m and 40.0m
e.g. start at 10.5m. Sample at 10.5m, 50.5m, 90.5m, 130.5, 170.5m
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Systematic spatial samples

Statistical properties of systematic sampling

Because randomness only at the start, only N/n = 400 unique
samples

P[unit i is sampled] is same for all units

so Ȳ is unbiased

Joint inclusion probability, P[units i and j are in the sample],
not the same for all pairs

1/400 if i and j separated by multiple of 40.0m
40m is the spacing of samples along transect
0 if not multiple of 40m apart

which means big problems estimating Var Y and especially Var Ȳ .
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Systematic sampling on this transect

Population quantities: µ = 63.59, σ2 = 551.41, σ = 23.48

Systematic sample: Ȳ = 63.59, Es2 = 679.33 (23% larger than σ2)

Biggest change: Var Ȳ = 6.13, much much smaller than σ2/n ≈ 110.

So small because for n = 5, each systematic sample includes some
“high” places and some “low” places.

Very dependent on the population under study and the relationship
between it and the sample

Can’t make generalizations about E s2:
can be “too small” or “too large”.

Traditional example: ag field with high and low places because of
plowing. Real problem when sample locations line up with plow lines.

Worse, don’t even know about the problem from the sample
information alone.
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GrTS sampling

Systematic sampling has some desirable features
Spreads points out.

SRS could sample all 5 points between 100m and 110m on our transect
Systematic can not.
Sample points never “too close” to each other
No part of the population “too far” from a sample point

Maximizes information when nearby observations are correlated
pair of highly correlated (nearby) points has less information
well-space points closer to independent

and some issues
difficult to estimate se

joint-inclusion probability = 0 for many pairs

Solutions include
multiple systematic samples: analyze as a cluster sample
GrTS sampling

GrTS: Generalized Random Tesselation Stratified Design
Stevens, D.L. Jr. and Olsen, A.R. JAgBiolEnvStats 4:415-428 (1999),
Environmetrics 14:593-610 (2003), JAmStatAssoc 99:262-278 (2004)
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GrTS sampling

true probability design
inclusion and joint inclusion probability are known
both > 0, so valid estimate of mean/total and its se

approximately spatially balanced
points spread out, like a systematic sample

Plus: subsets L1 · · · Lm, m < n are also spatially balanced

Common problem with systematic sampling
Plan to take n = 20 samples from N = 2000.
Sample L5, L105, L205, · · · L1505 then a storm blows in
Subset is not spatially balanced.

Useful for monitoring program design
Have funding for 20 locations. Draw sample of 50 locations. Sample
first 20. If get more $ in the future, add locations from the list of 50.
Rotating panel: two types of monitoring locations.

Permanent sites: sampled every year
Rotating sites: 5 groups, one group sampled each year
Denser spatial coverage AND ability to detect sudden change
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Design- and model-based inference

The theory a few slides ago illustrated design-based inference

Population values are fixed,
the random variables are whether or not unit i included in the sample

The alternative is to presume a model for the population of values

e.g. Yi
iid∼ N(µ, σ2)

iid: Independent, identically distributed

If you believe this model, then 3 equally valid samples:

5 randomly chosen units
5 systematically sampled units
Y1, Y2, Y3, Y4, Y5 (1st five values in the population)

Validity of inferences depends on validity of the model

Most statistical methods rely on model-based inference

Hence so much emphasis on diagnostics to assess assumptions
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Sampling without a design

What if you have a happenstance collection of samples?

No list of items in the population (actual or hypothetical)

No probability-based selection of sample

But, no deliberate attempt to select samples with certain properties

Example of a deliberate attempt
Pigs: average litter size ca 10 piglets / sow
Can’t measure all, choose 2 largest (by eye) and 2 smallest (by eye)
Reasonable estimate of mean, overestimate variance
Can get valid estimates using Ranked Set Sampling
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Happenstance samples

What can you do?

Many opinions

Mine: Is it reasonable to treat sample as if SRS or some other
random sample?

Depends on non-statistical information

Two examples:

Average annual precipitation in continental US
Average temperature change (1815 - 2015) in cont. US
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Precipitation
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Precipitation

Could calculate average of all ca. 5000 stations

Should you?

Probably not: a particular 0.1 km2 more likely to be sampled in
Midwest / Eastern US
Data should not be considered equal probability sample

Could tessellate the US: e.g., Voronoi = Dirichlet tessellation

Polygon i outlines the area closer to point i than any other point.
Will be larger in desert areas (precip. stations further apart) than
Midwest / Eastern US

Then consider sample location as a random sample of one location
within each polygon

P[location i in sample] = pi ∝ 1 / area of the polygon.

unequal probability sample. µ̂ = ΣYi/pi

result is an area-weighted average.
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Temperature change

Could calculate average of all long-term temperature records

Should you?

Many issues, I’m sure I only know some.
More than area sampling issues
Precip. analysis assumed that sampled locations are not systematically
different from unsampled areas.
Most (all?) long term temperature records in cities.
Urban heat island effects: cities may systematically differ from rural
areas.

Concept for both: I’m the wrong person to decide whether a
happenstance sample provides useful information about the larger
population.
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Model based approach for happenstance samples

Alternative: abandon design-based inference. Assume a model.

No statistical issues, except

Validity of inference assumes that model is correct
May be hard to justify

Especially because the population being sampled may not be clearly
defined

Temperature change

assume data are a equiprobable sample from some population
not clear exactly what that pop. is, but it has a µ.
and Ȳ estimates µ. (because equiprobable assumption)
Not clear that you care about µ
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Summary of sampling

Statistical inference for samples justified by the sample design

Design: how sample units were selected

SRS: valid even if spatial correlation

math shown only to give you a flavor for how results can be derived
usual estimators are valid but there may be better ones

When problem is important, spend time thinking about the sampling
design

Or justified by assuming a model

Conclusions appropriate when model assumptions are appropriate.
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Summary of sampling - 2

Larger concept: want to estimate or predict some quantity

parameter for a population, value at a location
more than one way to convert sample values to an estimate / prediction
to compare methods:

evaluate what happens when sampling is repeated
Bias: on average, are we correct?
Precision: how variable is the estimate? quantify using se.
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