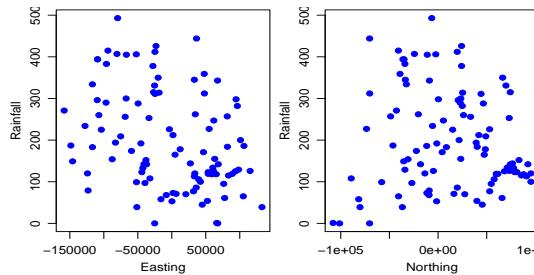


Visualizing spatial data

Goal: draw a picture to illustrate interesting patterns in data

- Problem: Spatial data is 3D: X,Y for location and Z for value
- Could plot Z vs X and Z vs Y: incomplete

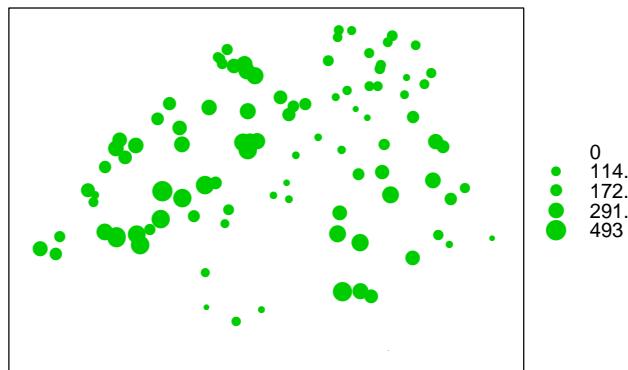
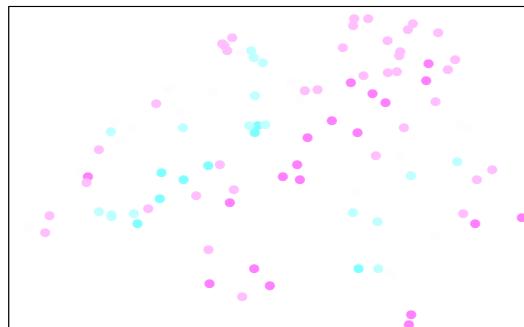


Visualizing spatial data

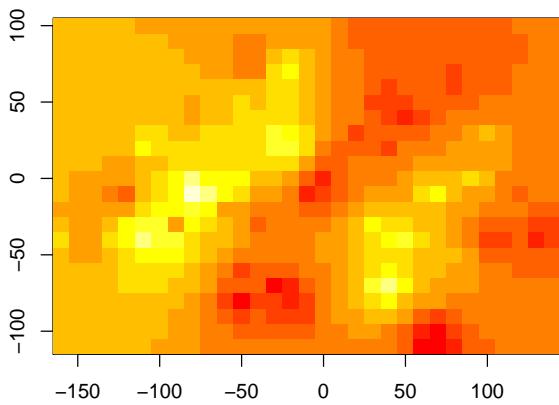
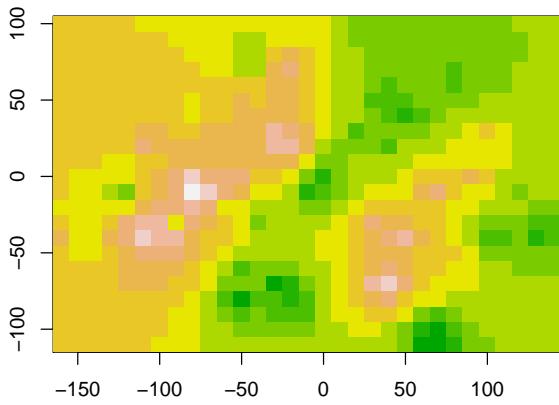
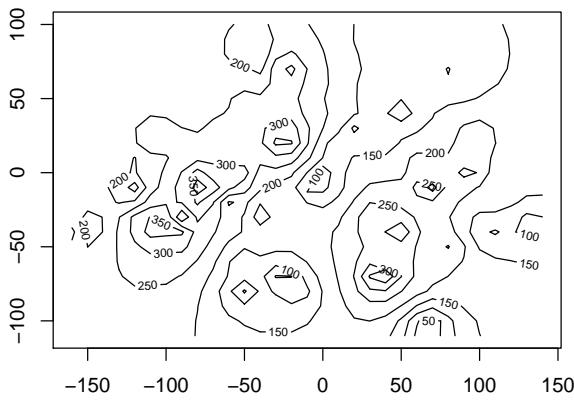
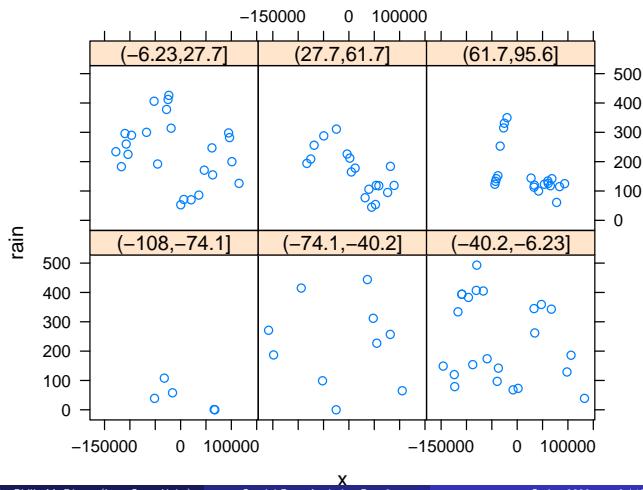
Many different solutions. I'll illustrate various

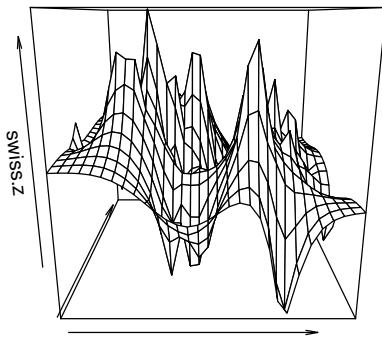
- bubble plot: radius of symbol proportional to \sqrt{Z}
Avoids a graphical illusion: we see area, not radius/diameter
so radius $\propto \sqrt{Z}$ means area $\propto Z$.
- colored dot plot: color indicates Z
- image plot: color indicates Z
- contour plot: lines indicate Z
- Avoid perspective plots. They usually don't work well.
- more focused plots for specific situations
 - Conditioning plots: compactly show subsets of data all at once
 - Z vs X for bands of Y
 - Spatial plot for each time

rain



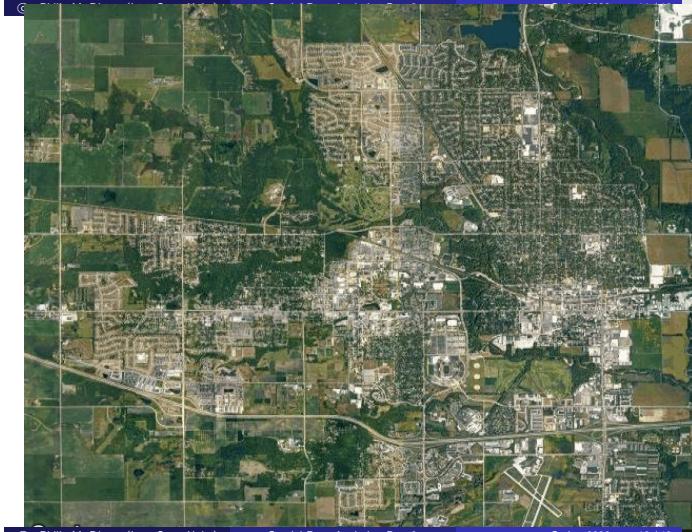
- [0,98.6]
- (98.6,197.2]
- (197.2,295.8]
- (295.8,394.4]
- (394.4,493]

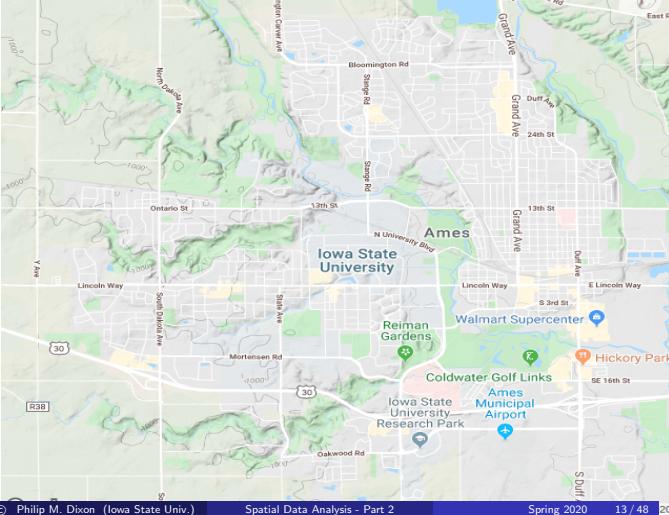




Visualizing data on maps

- You can plot data on maps
 - Can show just the locations or values at locations
 - Often more informative than on a blank background
- Need to get the map: 3 major sources
 - OpenStreetMaps: appears to not be available right now
 - Bing: requires registration and an API key
 - Google: street maps are open, other images require API key

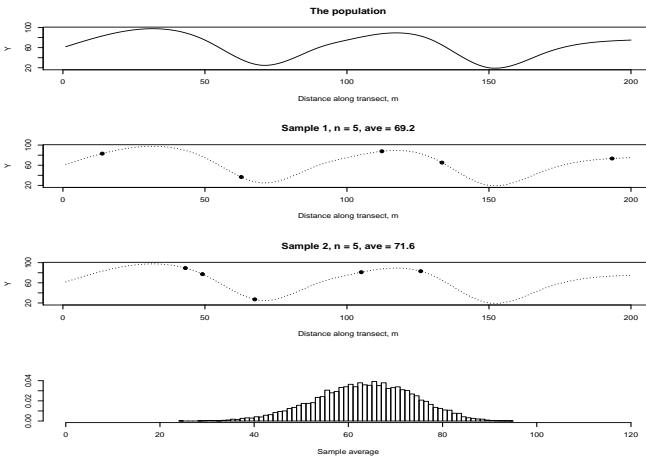




Spatial sampling

Consider a population of 2000 objects along a line (next slide)

- Want to learn about this population, but can only afford $n = 5$ samples
- Draw a sample, estimate sample quantities, infer to the population
- Simple random sample
 - usually without replacement
 - every unit has same probability of occurring in the sample
 - inclusion probability
 - every pair of units has the same probability of occurring together in the sample
 - joint inclusion probability



Simple random sample

Simpler population: 2000 students

- randomly select and measure 5 of the 2000 units in the population
- calculate sample average: $\bar{Y} = \frac{\sum Y_i}{n}$
- and sample variance: $s^2 = \frac{1}{n-1} \sum (Y_i - \bar{Y})^2$
- and se of $\bar{Y} = \sqrt{s^2/n}$

Questions:

- Why is \bar{Y} a good way to estimate μ ?
- Why is s^2 a good way to estimate σ^2 ?
- Is $\sqrt{s^2/n}$ a good estimate of the variability of \bar{Y} ?

Why "usual" quantities are good quantities:

- because of theoretical properties of the estimators.
- because of simulation studies do not uncover problems.

Notation / vocabulary:

- $E X$ is the expected value (theoretical average) of X , a random variable.
- Estimator: The function that computes an estimate
- Estimate: A value for a specific data set

Properties of estimators

Results from 587/588 stated / proved using a model for the data

$$Y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \text{iid } N(0, \sigma^2)$$

- Observations (or errors) are independent
- With constant variance
- And mean error = 0 for all observations

Why the mean is good:

- Unbiased: $E \bar{Y} = \mu$
- Minimum variance among unbiased estimators for this model:

(optional) Proof / elaboration

Why mean is unbiased

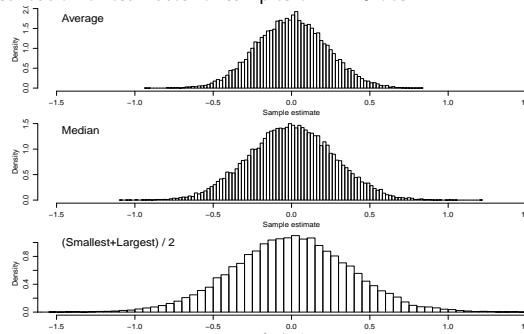
- Model says $E \varepsilon = 0$, so $E Y = \mu$
- $E \bar{Y} = E [\sum Y_i/n] = \sum E [Y_i]/n = \sum \mu/n = n\mu/n = \mu$

Minimum variance among all unbiased estimators

- \bar{Y} is a random variable. Estimates μ . Has a variance. Note $\text{Var } \bar{Y} = s^2$
- Consider another unbiased estimator of μ . Call it θ . $E \theta = \mu$.
- Can prove: $\text{Var } \bar{Y} \leq \text{Var } \theta$
- True for **any** θ that is unbiased
- \bar{Y} better (or never worse) than any other unbiased estimator of μ .
- When $\text{Var } \theta$ is the criterion for better

Properties of estimators

- Example: Model above (Normal errors). Three ways to estimate μ : average, median, and mid-range: ave. of smallest and largest value.
- Distribution of estimates for samples of $N=20$ obs.



Properties of estimators

- Example: Model above (Normal errors) with $\mu = 0$.
- Numeric summaries of the three sampling distributions

Statistic	average	sd
average	0.00	0.224
median	0.00	0.272
mid-range	0.00	0.378

- All three estimators are unbiased:
 - Population mean: 0.0000. All estimators are 0.00, on average
- Sample average is the least variable.
- Sample variance is an unbiased estimate of σ^2
- And $s^2/n (= se^2)$ is an unbiased estimate of the variance of \bar{Y}

Properties of estimators

- Above result seems obvious:
 - sample average uses all the observations, so isn't it obviously the best?
- Not at all a duh, obvious.
- New model for data: uniform distribution: $Y_i \sim U(a, b)$
- a and b not known, $\mu = (a + b)/2$.
 - Assume population is $U(0, 2)$, $\mu = 1$
- Best estimator of μ is now the mid-range.

Statistic	mean	se
average	1.00	0.13
median	1.00	0.21
mid-range	1.00	0.066

- Crucial point: "good" or "not-so-good" depend on the model

Back to Simple Random Sample of a transect

Measure 5 locations along our transect. Simple random sample.

- Randomly choose locations to measure.
- All locations are equally likely to be chosen
- SRS: all sets of 5 locations equally likely to be chosen
- Analyze in usual way: \bar{Y} , s , se of $\bar{Y} = s/\sqrt{n}$

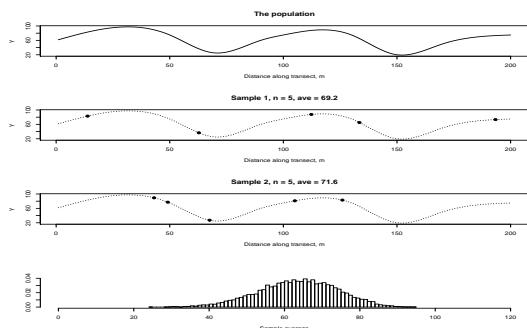
The population has a clear spatial trend.

Units are similar to their neighbors

Questions:

- What can we say about \bar{Y} ? Is it still good?
- Are the sample average and sd still valid estimators of the population quantities?
- Is that se calculation still appropriate?

Back to a Simple Random Sample



- What can we say about \bar{Y} ? Is it still good?
- Are the sample average and sd still valid estimators of the population quantities?
- Is that se calculation still appropriate?

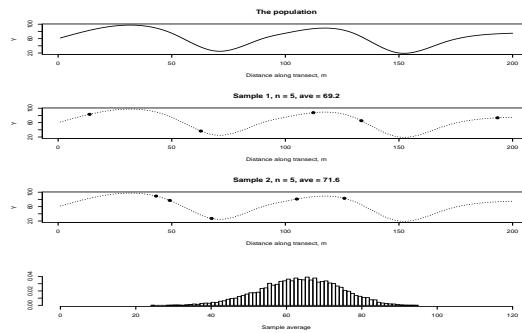
- A: Yes, to all questions.

Spatial correlation in the population does not make usual estimators "bad"

But, often can use spatial correlation to get a better estimator

Question

- Q: When you sample from a population, what is the random variable?



Answer

- Q: What is the random variable?
- A: It is not the value attached to a population unit, Y_i .
 - The Y_i are assumed to be fixed values, one for each unit.
 - The value for unit 125 doesn't change because it was or wasn't sampled.
- The only random variable in the classic approach to sampling is whether or not the i 'th unit is included in the sample.
- Example of design based inference
 - Statistical conclusions justified by how the data were collected
 - not by an imaginary model (model based inference)
- Huge practical consequences.

(optional) Properties of SRS for spatial data: average

- Define $S_i = I(\text{unit } i \text{ is in the sample})$
- $E S_i = \frac{\sum S_i}{N} = \frac{n}{N} = P[\text{unit } i \text{ in the sample}]$
- $\bar{Y} = \frac{\sum_{\text{all obs}} S_i Y_i}{N}$

•

$$\begin{aligned} E \bar{Y} &= \frac{\sum_{\text{all obs}} S_i Y_i}{n} = \frac{1}{n} E \sum_{\text{all obs}} S_i Y_i = \frac{1}{n} \sum_{\text{all obs}} Y_i E S_i \\ &= \frac{1}{n} \sum_{\text{all obs}} Y_i \frac{n}{N} = \frac{\sum_{\text{all obs}} Y_i}{N} = \mu \end{aligned}$$

- Usual expression for s^2 is clumsy to work with
- Another formula for the sample variance is $s^2 = \frac{\sum_{j>i}(Y_i - Y_j)^2}{n(n-1)}$
Try it sometime!
- Define $S_{ij} = I(\text{sample includes units } i \text{ and } j)$
- $E S_{ij} = \frac{\sum_{j>i} S_{ij}}{N(N-1)/2} = \frac{n(n-1)/2}{N(N-1)/2} = \frac{n(n-1)}{N(N-1)} = P[\text{units } i \text{ and } j \text{ in the sample}]$
-

$$\begin{aligned} E s^2 &= E \frac{\sum_{j>i}^N S_{ij}(Y_i - Y_j)^2}{n(n-1)} = \frac{\sum_{j>i}^N (Y_i - Y_j)^2 E S_{ij}}{n(n-1)} \\ &= \frac{\sum_{j>i}^N (Y_i - Y_j)^2}{n(n-1)} \frac{n(n-1)}{N(N-1)} = \frac{\sum_{j>i}^N (Y_i - Y_j)^2}{N(N-1)} = \sigma^2 \end{aligned}$$

$$\begin{aligned} \text{Var } \bar{Y} &= \text{Var} \left(\frac{1}{n} \sum_i^N S_i Y_i \right) = \\ &= \frac{1}{n^2} \left(\sum_i^N Y_i^2 \text{Var } S_i + 2 \sum_{j>i}^N Y_i Y_j \text{ Cov } S_i, S_j \right) \\ E S_i S_j &= P[S_i = 1, S_j = 1] = E S_{ij} = \frac{n(n-1)}{N(N-1)} \\ \text{Cov } S_i, S_j &= E S_i S_j - (E S_i)(E S_j) = \frac{n(n-1)}{N(N-1)} - \left(\frac{n}{N} \right)^2 \\ &= \frac{-n(N-n)/N}{N(N-1)} \\ \text{Var } \bar{Y} &= \frac{1}{n^2} \frac{n}{N} \frac{N-n}{N} \left(\sum_i^N Y_i^2 - \frac{1}{N-1} \sum_{j>i}^N Y_i Y_j \right) \end{aligned}$$

This can be simplified by recognizing

$$\begin{aligned} \sum_i^N (Y_i - \bar{Y})^2 &= \sum_i^N Y_i^2 - \frac{(\sum_i^N Y_i)^2}{N} \\ &= \frac{N-1}{N} \left(\sum_i^N Y_i^2 - \frac{1}{N-1} \sum_{j>i}^N Y_i Y_j \right) \\ \text{Var } \bar{Y} &= \frac{1}{n} \frac{N-n}{N} \frac{\sum_i^N (Y_i - \bar{Y})^2}{N-1} \\ &= \frac{\sigma^2}{n} \frac{N-n}{N} \end{aligned}$$

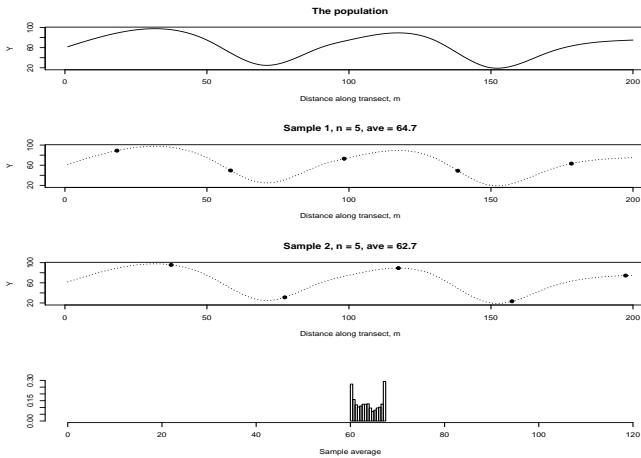
- Thompson, *Sampling*, is a good book on all this

- Notice what was not assumed above:
 - no distribution (no normality)
 - no equal variances
 - no assumption of relationships between neighbors
 - just each obs equally likely to be sampled
 - and each pair equally likely to be sampled
- All the properties of estimators in a simple random sample follow from the random selection of elements from the population.
- In particular, constant joint inclusion probability gets you a valid estimate of the standard error

- Another way of thinking about spatial correlation and a SRS:
 - The selection of units 1,2,3,4,5 is just as likely as any other sample
 - Can randomly permute the population, no change to properties of the estimators
 - But after permutation, no relationship among neighbors, no spatial correlation
- Having just said all this, there may be better estimators (e.g. of the population mean),
- Better in the sense of having a smaller standard error than the SRS estimator

Systematic spatial samples

- Simple random samples are not commonly used for spatial data
- Systematic sampling is much more common
- Put down a long meter tape and sample (soil, plants, ...) every 10m.
- Or sample at a grid of points, separated by 10m EW and 10m NS
- Best is a random start systematic sample
 - Starting point is randomly chosen, then every X m
- $n = 5$ points on our 200m = 2000 unit transect
 - 200m/5 = 40m between points
 - randomly choose starting point between 0.1m and 40.0m
 - e.g. start at 10.5m. Sample at 10.5m, 50.5m, 90.5m, 130.5, 170.5m



Systematic spatial samples

Statistical properties of systematic sampling

- Because randomness only at the start, only $N/n = 400$ unique samples
- $P[\text{unit } i \text{ is sampled}]$ is same for all units
- so \bar{Y} is unbiased
- Joint inclusion probability, $P[\text{units } i \text{ and } j \text{ are in the sample}]$, not the same for all pairs
 - 1/400 if i and j separated by multiple of 40.0m
40m is the spacing of samples along transect
 - 0 if not multiple of 40m apart
- which means big problems estimating $\text{Var } Y$ and especially $\text{Var } \bar{Y}$.

- Population quantities: $\mu = 63.59$, $\sigma^2 = 551.41$, $\sigma = 23.48$
- Systematic sample: $\bar{Y} = 63.59$, $Es^2 = 679.33$ (23% larger than σ^2)
- Biggest change: $\text{Var } \bar{Y} = 6.13$, much much smaller than $\sigma^2/n \approx 110$.
- So small because for $n = 5$, each systematic sample includes some "high" places and some "low" places.
- Very dependent on the population under study and the relationship between it and the sample
- Can't make generalizations about $E s^2$: can be "too small" or "too large".
- Traditional example: ag field with high and low places because of plowing. Real problem when sample locations line up with plow lines.
- Worse, don't even know about the problem from the sample information alone.

GrTS sampling

- Systematic sampling has some desirable features
 - Spreads points out.
 - SRS could sample all 5 points between 100m and 110m on our transect
 - Systematic can not.
 - Sample points never "too close" to each other
 - No part of the population "too far" from a sample point
 - Maximizes information when nearby observations are correlated
 - pair of highly correlated (nearby) points has less information
 - well-space points closer to independent
- and some issues
 - difficult to estimate se
 - joint-inclusion probability = 0 for many pairs
- Solutions include
 - multiple systematic samples: analyze as a cluster sample
 - GrTS sampling
- GrTS: Generalized Random Tesselation Stratified Design
 - Stevens, D.L. Jr. and Olsen, A.R. JAgBiolEnvStats 4:415-428 (1999), Environmetrics 14:593-610 (2003), JAmStatAssoc 99:262-278 (2004)

GrTS sampling

- true probability design
 - inclusion and joint inclusion probability are known
 - both > 0 , so valid estimate of mean/total and its se
- approximately spatially balanced
 - points spread out, like a systematic sample
- Plus: subsets $L_1 \dots L_m$, $m < n$ are also spatially balanced
- Common problem with systematic sampling
 - Plan to take $n = 20$ samples from $N = 2000$.
 - Sample L_5 , L_{105} , L_{205} , \dots L_{1505} then a storm blows in
 - Subset is not spatially balanced.
- Useful for monitoring program design
 - Have funding for 20 locations. Draw sample of 50 locations. Sample first 20. If get more \$ in the future, add locations from the list of 50.
 - Rotating panel: two types of monitoring locations.
 - Permanent sites: sampled every year
 - Rotating sites: 5 groups, one group sampled each year
 - Denser spatial coverage AND ability to detect sudden change

Design- and model-based inference

- The theory a few slides ago illustrated design-based inference
 - Population values are fixed,
 - the random variables are whether or not unit i included in the sample
- The alternative is to presume a model for the population of values
 - e.g. $Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$
 - iid: Independent, identically distributed
 - If you believe this model, then 3 equally valid samples:
 - 5 randomly chosen units
 - 5 systematically sampled units
 - Y_1, Y_2, Y_3, Y_4, Y_5 (1st five values in the population)
- Validity of inferences depends on validity of the model
- Most statistical methods rely on model-based inference
- Hence so much emphasis on diagnostics to assess assumptions

What if you have a happenstance collection of samples?

- No list of items in the population (actual or hypothetical)
- No probability-based selection of sample
- But, no deliberate attempt to select samples with certain properties
 - Example of a deliberate attempt
 - Pigs: average litter size ca 10 piglets / sow
 - Can't measure all, choose 2 largest (by eye) and 2 smallest (by eye)
 - Reasonable estimate of mean, overestimate variance
 - Can get valid estimates using Ranked Set Sampling

Happenstance samples

What can you do?

- Many opinions
- Mine: Is it reasonable to treat sample as if SRS or some other random sample?
- Depends on non-statistical information
- Two examples:
 - Average annual precipitation in continental US
 - Average temperature change (1815 - 2015) in cont. US

Precipitation

Precipitation

- Could calculate average of all ca. 5000 stations
- Should you?
 - Probably not: a particular 0.1 km^2 more likely to be sampled in Midwest / Eastern US
 - Data should not be considered equal probability sample
- Could tessellate the US: e.g., Voronoi = Dirichlet tessellation
 - Polygon i outlines the area closer to point i than any other point.
 - Will be larger in desert areas (precip. stations further apart) than Midwest / Eastern US
- Then consider sample location as a random sample of one location within each polygon
- $P[\text{location } i \text{ in sample}] = p_i \propto 1 / \text{area of the polygon.}$
- unequal probability sample. $\hat{\mu} = \sum Y_i / p_i$
- result is an area-weighted average.

- Could calculate average of all long-term temperature records
- Should you?
 - Many issues, I'm sure I only know some.
 - More than area sampling issues
 - Precip. analysis assumed that sampled locations are not systematically different from unsampled areas.
 - Most (all?) long term temperature records in cities.
 - Urban heat island effects: cities may systematically differ from rural areas.
- Concept for both: I'm the wrong person to decide whether a happenstance sample provides useful information about the larger population.

Model based approach for happenstance samples

- Alternative: abandon design-based inference. Assume a model.
- No statistical issues, except
 - Validity of inference assumes that model is correct
 - May be hard to justify
- Especially because the population being sampled may not be clearly defined
- Temperature change
 - assume data are a equiprobable sample from some population
 - not clear exactly what that pop. is, but it has a μ .
 - and \bar{Y} estimates μ . (because equiprobable assumption)
 - Not clear that you care about μ

Summary of sampling

- Statistical inference for samples justified by the sample design
 - Design: how sample units were selected
- SRS: valid even if spatial correlation
 - math shown only to give you a flavor for how results can be derived
 - usual estimators are valid but there may be better ones
- When problem is important, spend time thinking about the sampling design
- Or justified by assuming a model
 - Conclusions appropriate when model assumptions are appropriate.

Summary of sampling - 2

- Larger concept: want to estimate or predict some quantity
 - parameter for a population, value at a location
 - more than one way to convert sample values to an estimate / prediction
 - to compare methods:
 - evaluate what happens when sampling is repeated
 - Bias: on average, are we correct?
 - Precision: how variable is the estimate? quantify using se.